Chapter 23 & 24 Process of

Evolution *I. Population Genetics

Pumpkin A, B, C

Pebbles Hair Variation

Garfield Nose Variation

- **X** Modern evolutionary theory integrates Darwinian selection and Mendelian freq
 - X Chance variations arise in populations.
 - × Variations are transmitted from parents to offspring

- ★B. The genetic structure of a population is defined by its allele and genotype frequencies
 - ➤ Population= group of organisms which belong to the same species.
 - ➤ Gene Pool-The total aggregate of all genes (alleles) in a population at any one time.

Gene Pools

- The relative frequency of an allele is the number of times that a gene occurs in a gene pool.
 - This is expressed as a percentage.
 - (40% Black, 60% Brown)
- Evolution is any change in the relative frequency in alleles in a population.
 - So evolution would be in action if the relative frequency changed from 40% black to 30%.

p + q = 1

- *C. The Hardy-Weinberg Theorem $p^2+2pq+q^2=1$
- **X** It describes a nonevolving population.
- ★ It states that in the absence of other factors, the segregation and recombination of alleles during meiosis and fertilization will not alter the overall genetic makeup of a population.

The Hardy-Weinberg Theorem

- 5 Conditions:
 - -1. No mutation
 - No gene flow-isolation from other populations
 - -3. Random mating
 - –4. Large Population = NO genetic drift
 - -5. No natural selection

Real Populations

- Mutations: Mutations happen at a constant rate – they can not be avoided
 - Chromosomal
 - Single gene
- Gene Flow:
 - Immigration
 - Emigration it happens

Mutations of Chromosomes

Real Populations

- Genetic Drift: Changes in gene pool of a <u>small</u> population due to chance (2 Factors)
 - Bottleneck Effect: size of population may be reduced by natural disasters, killing organisms nonselectively
 - Founder Effect: few individuals colonize a new habitat.

Real Populations

 Microevolution-a generation-togeneration change in a population's allele or genotype frequencies.

> Microevolution is caused by mutation, gene flow, nonrandom mating, genetic drift, and <u>natural</u>

selection.

Sexual selection happens!

Real Populat

★ Genetic Variation and Natural Selection

X Natural Selection

- The process that results in adaptation of a population to the environment.
- × Fitness-the extent to which an individual contributes fertile offspring to the next generation.

- Genetic Variation and Natural Selection
- Types of Selection
 - Directional Selection
 - Stabilizing Selection
 - Disruptive Selection

Types of Selection

Where is fitness high?
Where is it low?
List examples for each

- Review from Semester 1
 - Adaptive radiation
 - Convergent evolution
 - Divergent evolution
 - -Co-evolution

- Maintenance of Variations
 - Forces that promote variation.

Natural Selection cannot fashion perfect organisms.

- **★**Organisms are locked into historical constraints.
- ★Adaptations are often compromises.
 - **≭**examples

- Not all evolution is adaptive.
- Selection can only edit variations that exist.

- III. What is a Species?
- A. The biological species concept emphasizes reproductive isolation.
 - Species become different once they are reproductively isolated from each other
- B. Prezygotic and postzygotic barriers isolate the gene pools of species.
 - Type of reproductive barrier depends on whether they were before or after the formation of zygotes.
 - **Define Zygote:

Prezygotic Barriers: barries to eggs being fertilized

Postzygotic Barriers: Egg meets sperm – but...

- Adaptive Radiation -the evolution of many diversely adapted species from a common ancestor.
- Modes of Speciation
- A. Two Types
 - 1. Allopatric Speciation
 2. Sympatric speciation

Allopatric speciation in squirrels: White-tailed antelope squirrel Harris's antelope squirrel Allopatric speciation is the dominant form of speciation among most groups of organisms

- Allopatric Speciation
 - Speciation that occurs when the initial block to gene flow is a geographical barrier that physically isolates the population.
 - Conditions favoring allopatric speciation
 - <u>Dispersal</u> how they are distributed
 - Variance the variation in habitat drives the evolution

C. Sympatric Speciation

- Members of a single population develop a genetic difference that prevents them from reproducing with the parent type.
- Niche partitioning
- Sexual selection

How do you know you have a new species?