Key Terms:

Absorption Spectrum
Accessory Pigments
Acetyl Coenzyme A
Action Spectrum
Activation Energy
Active Site
Aerobic
Allosteric Site
Anabolic Pathways
Anaerobic

ATP

Autotrophs

Catabolic Pathways

Catalysts

Calvin Cycle

Carbon Cycle

Cellular Respiration

Chemiosmosis

Chemoautotrophs

Chlorophyll

Chloroplast

Coenzymes

Cofactors

Competitive Inhibitors

Consumers

Cristae

Detritovores (Decomposers)

Electron Transport System

(ETS)

Endergonic

Energy Flow

Entropy

Enzyme Inhibition

Enzymes

Enzyme-Substrate Complex

Exergonic

FADH₂

Fermentation

Food Chain

Food Web

Glycolysis

Grana

Heterotrophs

Induced Fit Model

Krebs Cycle

Key Concepts

Chapters: 8, 10, 9, & 55

- Enzymes are biological catalysts whose specificity is dictated by the shape and charge of the active site
- Enzyme activity is dependent on many factors and can be altered by surrounding conditions
- ATP is the universal energy currency in cells
- Cellular respiration involves eh stepwise oxidation of glucose in the mitochondria
- Photosynthesis uses light energy to fix carbon in organic compounds. This occurs in the chloroplast
- Both photosynthesis and respiration use chemiosmosis to generate ATP

Essential Knowledge: Enzyme Structure and Function (4.B.1)

	Using enzymes as an illustrative example, explain how change in the structure	
of a mo	lecular system may change its function.	
	Describe the general role of enzymes as biological catalysts. Include reference	
to the a	ctive site and the importance of specificity.	
	With reference to enzyme-substrate complex and activation energy ,	
explain	how enzymes work as catalysts in cells.	
	Explain the induced fit model of enzyme function. Compare and contrast this	
with the old lock and key example		
	Recall the difference between endergonic and exergonic reactions and	
outline the role of enzymes in anabolism and catabolism .		
	Describe the effect of substrate concentration, enzyme concentration, pH, and	
temperature on enzyme activity.		
	Distinguish between cofactors and coenzymes . Using examples, explain the	

- $\hfill\Box$ Distinguish between ${\bf cofactors}$ and ${\bf coenzymes}.$ Using examples, explain the role of cofactors in enzyme activity
- □ Describe **enzyme inhibition**. Explain the difference between **competitive inhibitors** and **non-competitive inhibitors**. Be able to interpret graphs of activity showing each type of inhibition.
- $\ \square$ Explain the role of **allosteric interactions** in the control of metabolic pathways.
- $\hfill \Box$ Explain how compartmentalization within cells and organisms contributes to functional efficiency.

Energy in Living Systems (2.A.1, 2.A.2)

	Explain how order in biological systems is maintained by constant input of free
energy.	Explain what happens when there is loss of order or free energy flow.

- □ Distinguish between **autotrophs** and **heterotrophs** with respect to their source of free energy and carbon.
- ☐ Using specific examples explain how **exergonic reactions** are coupled with energetically unfavorable reactions to offset **entropy** in biological systems.
- $\ \square$ Using examples describe how energy-related pathways in biological systems are sequential and may be entered at multiple points in the pathway.

Key Terms:

Law of Thermodynamics **Light Dependent Reactions** Light Independent reactions Matrix Mitochondria NAD+ NADP+ Noncompetitive Inhibitors **Nutrient Cycles** Oxidation Oxidative Phosphorylation Photoautotroph Photophosphorylation Photosynthesis Photosystem I & II Photorespiration **Primary Producers Primary Consumers** Producers Pyruvate **Redox Reactions** Reduction **Secondary Consumers** Stroma Substrate Substrate-level Phosphorylation **Tertiary Consumers** Thylakoid Thylakoid Space **Transition Reaction** Trophic Levels

Photosynthesis (2. A.2)

Earth's crust, water, and organisms.

 Describe the structure and role of the chloroplasts.
☐ Explain the role of chlorophyll a and accessory pigments in light capture by
green plants. Explain what is meant by ${\bf absorption}\ {\bf spectrum}\ {\bf and}\ {\bf action}\ {\bf spectrum}\ {\bf of}$
pigments.
□ Explain what happens in the electron transport system (ETS)
\square Describe and explain photosynthesis in a C ₃ plant, include reference to
 The generation of ATP and NADPH2 in the light dependent reactions
o The Calvin cycle and the fixation of CO ₂ using ATP and NADPH ₂ in the
light independent phase
 Include reference to the reduction of G3P and the regeneration of
ribulose biphosphate (RuBP)
 Describe the factors that affect photosynthetic rate and yield.
□ Explain the role of chemiosmosis during photosynthesis including where
specifically the ATP is generated. Compare this to chemiosmosis in the mitochondria.
Cell Respiration (2.A.2)
☐ Explain the role of ATP in metabolism. Describe the synthesis of ATP and
explain how it stores and releases its energy. Compare cellular respiration and
photosynthesis as energy transformation processes.
□ Describe the structure and function of a mitochondrion. Identify the location
of each step in glucose catabolism: glycolysis , transition reaction (link reaction),
Krebs cycle, and electron transport system (ETS) also called electron transport
chain.
□ Describe glycolysis and recognize it as the major anaerobic pathway in cells.
State the net yield of ATP and NADH from glycolysis.
\square Describe the complete oxidation of glucose to CO_2 , including reference to:
o The conversion of pyruvate to acetyl-coenzyme A .
o The stepwise oxidation of intermediates in the Krebs cycle .
 Generation of ATP by chemiosmosis in the ETS.
 The role of oxygen as the terminal electron acceptor.
□ Describe fermentation in mammalian muscle and in yeast, identifying the H ⁺
acceptor to each case. Compare and explain the differences in the yields of ATP from
aerobic respiration and from fermentation.
Energy Flow in Ecosystems (2.A.2, 4.A.6)
Describe how energy enters acceptance through the activity of autotronic
 Describe how energy enters ecosystems through the activity of autotrophs. Recognize autotrophs as producers in ecosystems. Distinguish between
photoautotrophs (photosynthetic organisms) and chemoautotrophs
(chemosynthetic organsims) in terms of their source of free energy.
Describe how heterotrophs obtain their free energy. Recognize heterotrophs
as consumers in ecosystems. Distinguish between the different types of consumers,
outlining the role of each in trophic groups in energy transfer and nutrient cycling.
Recall how energy-capturing processes use different types of electron
acceptors (e.g. NADP+ in photosynthesis, oxygen in cellular respiration).
Describe how energy is transferred between trophic levels in food chains
and food webs . Comment on the efficiency of energy transfers.
☐ Understand how food chains and webs are dependent on primary productivity .
- · · · · · · · · · · · · · · · · · · ·
☐ Describe energy flow quantitatively using an energy flow diagram. Include reference to trophic levels, direction of energy flow, processes involved in energy
transfer, energy sources, and energy sinks. Describe the role of nutrient cycles in ecosystems. Use specific examples, e.g.
□ Describe the role of nutrient cycles in ecosystems. Use specific examples, e.g. the carbon cycle , nitrogen cycle , or hydraulic cycle to show how nutrients are
exchanged within and between ecosystems, moving between the atmosphere, the
CACHAILECA WIGHIN AND DELWECH COORSIGHIS, HIDVING DELWEEN THE ALIHOSDIE! E. THE